Genetic forms of amyotrophic lateral sclerosis – classification and genotypegenetic forms with high epidemiological frequency
Keywords:
ALS, genes, phenotypeAbstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with fatal outcome. To date, the association of mutations in 35 genes and 2 gene loci with the development of the disease has been proven. According to the observed clinical phenotype, the causative genes can be divided into two groups - leading to the development of pure ALS forms and ALS-plus syndromes. Mutations in four genes are indicated as major in the etiology of the genetic forms of ALS – C9orf72, SOD1, TARDBP and FUS, and they have got predominantly autosomal dominant type of inheritance. Although a genetic defect has been demonstrated in only about 60% of cases of familial ALS and 5-10% of those of sporadic ALS, intensive molecular genetic studies in patients with ALS have led to many new discoveries, as evidenced by the fact that 22 of the genes have been described in the scientific literature since 2010.
References
Mehrabian-Spasova, Sh. Kliniko-genetichni prouchvaniia pri frontotemporalna dementsiia i srodni zaboliavaniia. Disertatsiia za prisazhdane na nauchna stepen „doktor na naukite”, Sofia, 2016.
Sarafov, S. Kliniko-genetichni i epidemiologichni prouchvaniia pri transtiretinova familna amiloidna polinevropatiia i pri nasledstvena i familna amiotrofichna lateralna skleroza v Balgariia. Disertatsionen trud za prisazhdane na nauchna stepen „doktor na naukite”, Sofia, 2020.
Andersen, P., Nilsson, P., Ala-Hurula, V., Keranen, M.-L., Tarvainen, I., Haltia, T., Nilsson, L., Binzer, M., Forsgren, L., Marklund, S. Amyotrophic lateral sclerosis associated with homozygosity for an asp90-to-ala mutation in CuZn-superoxide dismutase. Nature Genet, 1995, 10, 61-66.
Ayala, Y., Zago, P., D’ambrogio, A., Xu, Y.-F., Petrucelli, L., Buratti, E. Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci, 2008, 121, 3778-3785.
Benajiba, L., Le Ber, I., Camuzat, A., Lacoste, M., Thomas-Anterion, C., Couratier, P., Legallic, S., Salachas, F., Hannequin, D., Decousus, M., Lacomblez, L., Guedj, E., Golfier, V., Camu, W., Dubois, B., Campion, D., Meininger, V., Brice, A. French Clinical and Genetic Research Network on Frontotemporal Lobar Degeneration/ Frontotemporal Lobar Degeneration with Motoneuron Disease. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol, 2009, 65, 470-474.
Boxer, A., Mackenzie, I., Boeve, B., Baker, M., Seeley, W., Crook, R., Feldman, H., Hsiung, G.-Y., Rutherford, N., Laluz, V., Whitwell, J., Foti, D., McDade, E., Molano, J., Karydas, A., Wojtas, A., Goldman, J., Mirsky, J., Sengdy, P., DeArmond, S., Miller, B., Rademakers, R. Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family. J Neurol Neurosurg Psychiat, 2011, 82, 196-203.
Brettschneider, J., Del Tredici, K., Toledo, J., Robinson, J., Irwin, D., Grossman, M. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol, 2013, 74, 20-38.
Buratti, E. TDP-43 post-translational modifications in health and disease. Expert Opin Ther Targets, 2018, 22, 279-293.
Dafinca, R., Barbagallo, P., Farrimond, L., Candalija, A., Scaber, J., Ababneh, N., Sathyaprakash, C., Vowles, J., Cowley, S., Talbot, K. Impairment of Mitochondrial Calcium Buffering Links Mutations in C9ORF72 and TARDBP in iPS-Derived Motor Neurons from Patients with ALS/FTD. Stem Cell Reports, 2020, 14, 5, 892-908.
Deng, H.-X., Hentati, A., Tainer, J., Iqbal, Z., Cayabyab, A., Hung, W.-Y., Getzoff, E., Hu, P., Herzfeldt, B., Roos, R., Warner, C., Deng, G., Soriano, E., Smyth, C., Parge, H., Ahmed, A., Roses, A., Hallewell, R., Pericak-Vance, M., Siddique, T. Amyotrophic lateral sclerosis and structural defects in Cu/Zn superoxide dismutase. Science, 1993, 261, 1047-1051.
Devenney, E., Tu, S., Caga, J., Ahmed, R., Ramsey, E., Zoing, M., Kwok, J., Halliday, G., Piguet, O., Hodges, J., Kiernan, M. Neural mechanisms of psychosis vulnerability and perceptual abnormalities in the ALS-FTD spectrum. Ann Clin Transl Neurol, 2021, 8, 8, 1576–1591.
Eleutherio, E., Magalhães, R., Brasil, A., Neto, J., Paranhos, L. SOD1, more than just an antioxidant. Arch Biochem Biophys, 2021, 697, 108701.
Evans, C., Holzbaur, E. Autophagy and mitophagy in ALS. Neurobiol Dis, 2019, 122, 35-40.
Forsberg, K., Graffmo, K., Pakkenberg, B., Weber, M., Nielsen, M., Marklund, S., Brännström, T., Andersen, P. Misfolded SOD1 inclusions in patients with mutations in C9orf72 and other ALS/FTD-associated genes. J Neurol Neurosurg Psychiatry, 2019, 90, 861–869.
Gendron, T., Petrucelli, L. Disease Mechanisms of C9ORF72 Repeat Expansions. Cold Spring Harb Perspect Med, 2018, 8, 4, a024224.
Giannini, F., Battistini, S., Mancuso, M., Greco, G., Ricci, C., Volpi, N., Corona, A., Piazza, S., Siciliano, G. D90A-SOD1 mutation in ALS: The first report of heterozygous Italian patients and unusual findings. Amyotroph Lateral Scler, 2010, 11, 1-2, 216-219.
Haeusler, A., Donnelly, C., Periz, G., Simko, E., Shaw, P., Kim, M.-S., Maragakis, N., Troncoso, J., Pandey, A., Sattler, R., Rothstein, J., Wang, J. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 2014, 507, 195-200.
Harms, M., Cady, J., Zaidman, C., Cooper, P., Bali, T., Allred, P., Cruchaga, C., Baughn, M., Libby, R., Pestronk, A., Goate, A., Ravits, J., Baloh, R. Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiol Aging, 2013, 34, e13-e19.
Hayashi, Y., Homma, K., Ichijo, H. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv Biol Regul, 2016, 60, 95-104.
Ishiura, H., Takahashi, Y., Mitsui, J., Yoshida, S., Kihira, T., Kokubo, Y., Kuzuhara, S., Ranum, L., Tamaoki, T., Ichikawa, Y., Date, H., Goto, J., Tsuji, S. C9ORF72 repeat expansion in amyotrophic lateral sclerosis in the Kii peninsula of Japan. Arch. Neurol, 2012, 69, 1154-1158.
Kimura, S., Kamatari, Y., Kuwahara, Y., Hara, H., Yamato, O., Maeda, S., Kamishina, H., Honda, R. Canine SOD1 harboring E40K or T18S mutations promotes protein aggregation without reducing the global structural stability. PeerJ, 2020, 8, e9512.
Kwiatkowski, T., Bosco, D., Leclerc, A., Tamrazian, E., Vanderburg, C., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E., Munsat, T., Valdmanis, P. and 15 others. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic Lateral Sclerosis. Science, 2009, 323, 1205–1208.
Lattante, S., Rouleau, G., Kabashi, E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat, 2013, 34, 812-826.
Lee, S., Kim, H. Prion-like mechanism in amyotrophic lateral Sclerosis: are protein aggregates the key? Exp Neurobiol, 2015, 24, 1-7.
Mancuso, M., Filosto, M., Naini, A., Rocchi, A., Del Corona, A., Sartucci, F., Siciliano, G., Murri, L. A screening for superoxide dismutase-1 D90A mutation in Italian patients with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord, 2002, 3, 4, 215-218.
Pang, W., Hu, F. Cellular and physiological functions of C9ORF72 and implications for ALS/FTD. J Neurochem, 2021, 157, 3, 334-350.
Pearson, J., Williams, N., Majounie, E., Waite, A., Stott, J., Newsway, V., Murray, A., Hernandez, D., Guerreiro, R., Singleton, A., Neal, J., Morris, H. Familial frontotemporal dementia with amyotrophic lateral sclerosis and a shared haplotype on chromosome 9p. J Neurol, 2011, 258, 647-655.
Ratti, A., Buratti, E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem, 2016, 138, 95-111.
Renton, A., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J., Schymick, J., Laaksovirta, H., van Swieten, J., Myllykangas, L., Kalimo, H., Paetau, A. and 65 others. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 2011, 72, 2, 257-268.
Rosen, D., Siddique, T., Patterson, D., Figlewicz, D., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J., Deng, H. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 362, 6415, 59-62.
Synofzik, M., Born, C., Rominger, A., Lummel, N., Schols, L., Biskup, S., Schule, C., Grasshoff, U., Klopstock, T., Adamczyk, C. Targeted high-throughput sequencing identifies a TARDBP mutation as a cause of early-onset FTD without motor neuron disease. Neurobiol Aging, 2014, 35, 1212.
Tsai, Y.-L., Coady, T., Lu, L., Zheng, D., Alland, I., Tian, B., Shneider, N., Manley, J. ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering respiratory chain complex mRNAs. Genes Dev, 2020, 34, 11-12, 785-805.
van den Bos, M., Geevasinga, N., Higashihara, M., Menon, P., Vucic, S. Pathophysiology and Diagnosis of ALS: Insights from Advances in Neurophysiological Techniques. Int J Mol Sci, 2019, 20, 11, 2818.
Van Deerlin, V., Leverenz, J., Bekris, L., Bird, T., Yuan, W., Elman, L. TARDBP mutations in amyotrophic lateral sclerosis with TDP43 neuropathology: a genetic and histopathological analysis. Lancet Neurol, 2008, 7, 409-416.
Vance, C., Rogelj, B., Hortobágyi, T., Kurt, J., Nishimura, A., Sreedharan, J. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science, 2009,323, 1208-1211.
Wang, W.-Y., Pan, L., Su, S., Quinn, E., Sasaki, M., Jimenez, J. Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci, 2013, 16, 1383-1391.
Yan, J., Deng, H.-X., Siddique, N., Fecto, F., Chen, W., Yang, Y., Liu, E., Donkervoort, S., Zheng, J., Shi, Y., Ahmeti, K., Brooks, B., Engel, W., Siddique, T. Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology, 2010, 75, 807-814.
Yokoseki, A., Shiga, A., Tan, C., Tagawa, A., Kaneko, H., Koyama, A. TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol, 2008, 63, 538-542.
Zinszner, H., Sok, J., Immanuel, D., Yin, Y., Ron, D. TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J Cell Sci, 1997, 110, 15, 1741-1750.
Zou, Z.-Y., Zhou, Z.-R., Che, C.-H., Liu, C.-Y., He, R.-L., Huang, H,-P. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatr, 2017, 88, 540-549.
Downloads
Published
How to Cite
Issue
Section
ARK
License
Copyright (c) 2021 Bulgarian Neurology

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.